

CalPack: Packets in Python Simplified

CalPack is the only package you’ll need to create, generate and parse packets in an easy to use way. This module wraps
the cytpes module into an easier to use interface and enabling more features specific to working with Packets.

Examples

Creating a new packet is as simple as creating a python class:

from calpack import models

class UDP(models.Packet):
 source_port = models.IntField()
 dest_port = models.IntField()
 length = models.IntField()
 checksum = models.IntField()

Since calpak is a wrapper to ctypes, the above class is equivalent to the following
ctypes.Structure:

import ctypes

class UDP(ctypes.Structure):
 fields = [
 ('source_port', ctypes.c_uint64, 16),
 ('dest_port', ctypes.c_uint64, 16),
 ('length', ctypes.c_uint64, 16),
 ('checksum', ctypes.c_uint64, 16),
]

Interactiong with the packet and it’s field is also simple:

p = UDP()
p.source_port = 80
p.dest_port = 80
p.length = 8

Index

	models - a collection of classes and functions to create new custom packets.
	Packet Basics

	Advanced Packet Concepts

	Packet Fields

	Class/Function specific Docs

Indices and tables

	Index

	Module Index

	Search Page

models - a collection of classes and functions to create new custom packets.

This module is the building blocks for creating packets by using builtin and custom fields. It also provides the
ability for users to create custom fields for their packets.

Packet Basics

In this section we cover the basics of how to create a packet and manipulate it contents.

Creating a Packet

Creating a custom packet requires inheriting the Packet class and then defining the Fields within the order
they are expected to be seen:

from calpack import models

class Header(models.Packet):
 source = models.IntField()
 dest = models.IntField()
 data1 = models.IntField()
 data2 = models.IntField()

Once a packet is defined, creating an instance of that packet allows you to manipulate it:

my_pkt = Header()

my_pkt.source = 123
my_pkt.dest = 456
my_pkt.data1 = 789

print(my_pkt.source)
123

A packet can also be created with fields already populated:

my_pkt = Header(
 source = 1,
 dest = 2,
 data1 = 3,
 data2 = 4
)

print(my_pkt.source, my_pkt.dest, my_pkt.data1, my_pkt.data2)
(1, 2, 3, 4)

A packet can then be converted into a byte string:

my_pkt.to_bytes()
b'{\x00\xc8\x01\x15\x03\x00\x00'

In reverse, a packet can be created from a byte string array:

my_parsed_pkt = Header.from_bytes(b'{\x00\xc8\x01\x15\x03\x00\x00')
print(my_parsed_pkt.source)
123

print(my_parsed_pkt.dest)
456

my_parsed_pkt == my_pkt
True

Shows that the packets are two different objects
my_parsed_pkt is my_pkt
False

Packet fields can be easily copied from and/or compared to other packets of the same Packet subclass:

my_pkt2 = Header()
my_pkt2.source = my_pkt.source
my_pkt2.dest = 654

my_pkt.source == my_pkt2.source
True

my_pkt.dest == my_pkt2.dest
False

Packets themself can also be compared:

my_pkt = Header()
my_pkt.source = 123
my_pkt.dest = 456
my_pkt.data1 = 789

my_pkt2 = Header()
my_pkt2.source = 123
my_pkt2.dest = 456
my_pkt2.data1 = 123

my_pkt == my_pkt2
False

my_pkt2.data1 = 789
my_pkt == my_pkt2
True

Note

Comparing two packets that are different classes but may have the same byte output will result in False

Advanced Packet Concepts

Creating simple packets with the basic Fields one thing but typically packets are more complex. For example,
one might want to create a packet with an array of fields, or even encapsulating a packet within another as a field.
This is easy to do within calpack through the use of the ArrayField or PacketField Fields.

Creating an Array of IntField‘s

When deal with a lot of fields that are the same it can become a bear to create each field:

class my_long_packet(models.Packet):
 data1 = models.IntField()
 data2 = models.IntField()
 data3 = models.IntField()
 data4 = models.IntField()
 data5 = models.IntField()
 data6 = models.IntField()
 data7 = models.IntField()
 data8 = models.IntField()

This can be simplified by using the models.ArrayField:

class ArrayPacket(models.Packet):
 data = models.ArrayField(models.IntField(), 8)

Accessing the elements in the ArrayField is similar to that of a python list:

my_array_pkt = ArrayPacket()
my_array_pkt.data[0] = 123
print(my_array_pkt.data[0])
123

my_array_pkt.data = list(range(8))
print(my_array_pkt.data)
[0, 1, 2, 3, 4, 5, 6, 7]

for val in my_array_pkt.data:
 val = 100

print(my_array_pkt.data)
[100, 100, 100, 100, 100, 100, 100, 100]

Encapsulating another Packet within a Packet

Sometimes you might want to encapsulate another packet within a packet as a field. This can be done by using the
models.PacketField:

class Header(models.Packet):
 source = models.IntField()
 destination = models.IntField()

class CustomPacket(models.Packet):
 header = models.PacketField(Header)
 spare = models.IntField()
 body = models.ArrayField(models.IntField(), 28)

Access to the fields within the encapsulated packet is as simple as calling that packets members:

pkt = CustomPacket()
pkt.header.source = 1
pkt.header.destination = 2

Packet Fields

calpack comes with some built-in Field classes that can be used right away.

IntField

The IntField is used to represent an integer. In the backend, this field uses the ctypes.c_int64 or
ctypes.c_uint64 depending on whether the field is configured as signed or not. This is done by passing the
signed parameter to the IntField:

int_field = models.IntField(signed=True)

Note

IntField is unsigned as a default.

Warning

If a signed value is set to an unsigned value (e.g any value less than 0) a TypeError will be raised.

Warning

although the example above defines a field outside of a Packet, this cannot be done in practice as each field
within the packet must be a new instance of a Field.

If a specific bit length is desired, passing the bit_len parameter to the desired length:

int_field = models.IntField(bit_len=8)

Note

the default value for bit_len is 16

Warning

If bit_len is less than or equal 0 or greater than 64 a ValueError will be raised.

Warning

although the example above defines a field outside of a Packet, this cannot be done in practice as each field
within the packet must be a new instance of a Field.

ArrayField

The ArrayField is used to create an array of fields. When creating the ArrayField two parameters must
be passed:

	An instance of the Field to be used

	The size of the Array

Example:

array_field = models.ArrayField(
 # Note that this is an **instance** of the IntField
 models.IntField(bit_len=8, signed=True)
 12
)

Note

It’s important to that the first argument is an instance of the Field and not the class

Warning

although the example above defines a field outside of a Packet, this cannot be done in practice as each field
within the packet must be a new instance of a Field.

Interacting with the ArrayField is similar to that of a python list where len and individual member
access can be done. The Field instance for the first parameter of the ArrayField can also be a
PacketField:

class Point(models.Packet):
 x = models.IntField(bit_len=8)
 y = models.IntField(bit_len=8)

class ArrayPacket(models.Packet):
 points = models.ArrayField(
 models.PacketField(Point),
 8
)

pkt = ArrayPacket()

for i, point in enumerate(pkt.points):
 point.x = i
 point.y = len(pkt.points) - 1

print([pkt.points[i].x, pkt.points[i].y for i in range(len(pkt.points))])
[(0, 8), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)]

Accessing the members of an ArrayField with a PacketField as the field type will be accessing instances
of those packets:

class ArrayPacket(models.Packet):
 points = array_field

pkt = ArrayPacket()
pkt.points[0].x = 100
print(pkt.points[0].x)
100

print(pkt.points[0].y)
0 # default value of IntField

PacketField

The PacketField is used to encapsulate another already defined packet. The encapsulation of packets can be
done multiple times as well:

class Point(models.Packet):
 x = models.IntField(bit_len=8)
 y = models.IntField(bit_len=8)

class Rectangle(models.Packet):
 top_left = models.PacketField(Point)
 top_right = models.PacketField(Point)
 bot_left = models.PacketField(Point)
 bot_right = models.PacketField(Point)

class TwoRectangles(models.Packet):
 first_rect = models.PacketField(Rectangle)
 second_rect = models.PacketField(Rectangle)

Creating a Custom Field

Creating a custom Field is done by first subclassing the Field class from calpack.models.
There are a few things to consider before creating a custom Field:

	There are specific properties that must be defined within the class

	Any methods defined must be a class method and cannot be used as an instance method

	
	You must have a basic understanding of the cyptes module specifically how to use the

	ctypes.Structure class.

It is recommended that you study the way that Structures [https://docs.python.org/3/library/ctypes.html#structures-and-unions/]
are created if you are looking to create a custom Field.

With that said, defining a custom Field is actually quite simple. The following properties must be defined
at either the class level or in a custom __init__:

	c_type - a ctypes class to be used within the internal ctypes.Structure instance.

	bit_len - the length of the field in bits

Within your custom Field you can customize the following functions which are further defined in
subsequent sections:

	create_field_c_tuple

	py_to_c

	c_to_py

create_field_c_tuple

This function is used to create the tuple that will go into the _fields_ property of the Packet’s internal
ctypes.Structure. It’s also important to note that the first elements in the tuple must be the property
self.field_name. CalPack will automatically populate this property for the Field class.

As a default, CalPack’s Field super class defines create_field_c_tuple as the following:

	def create_field_c_tuple(self):

	return (self.field_name, ctypes.c_int)

However this can be customized to suit the needs of the custom field. Since this will be directly used to create the
ctypes.Structure._fields_ anything that is appropriate in creating the structure can be used here:

def create_field_c_tuple(self):
 # return a c_int with only 4 bits as a field tuple. Note: this is similar to how
 # we set the bit length of the IntField class.
 return (self.field_name, ctypes.c_int, 4)

def create_field_c_tuple(self):
 # return a c_int Array as a field tuple. Note: this is similar to how we set the
 # array size of the ArrayField class.
 return (self.field_name, ctypes.c_int * 10)

Warning

If the first element in the field tuple is not self.field_name then access to the internal
c structure will be broken and the packets will not be accessible properly.

py_to_c

When setting a packet field to a value, that python object must be converted to a value that can be set for the
internal ctypes.Structure object of the packet. Most occasions the value of the python object is already
appropriate. By default this function does exactly that:

def py_to_c(self, val):
 return val

However in certain cases additional formatting, transformation or validation might be requried. Use this function
to override the behavior as needed.

c_to_py

Similar to going from python objects to c, the reverse of going from c to python might need to be configured properly.
Most occasions the value of the c object is already appropriate. By default this function does exactly that:

def c_to_py(self, c_field):
 return c_field

However in certain cases additional formatting, transformation or validation might be required. Use this function
to override the behavior as needed.

Full Example of Creating a Custom Field

The following is a quick example of how to create a custom Field within CalPack:

from calpack import models
import ctypes

class UInt30(models.Field):
 c_type = ctypes.c_uint32
 bit_len = 30

 def __init__(self):
 super(UInt30, self).__init__()
 self.max_size = (2 << self.bit_len) - 1

 def create_field_c_tuple(self):
 return (self.field_name, self.c_type, self.bit_len)

 def py_to_c(self, val):
 if val < 0:
 raise ValueError("UInt30 must be a positive number!")

 if val > self.max_size:
 raise ValueError("UInt30 cannot be greater than {}".format(self.max_size))

 return val

Class/Function specific Docs

	
class models.Field(default_val=None)

	A Super class that all other fields inherit from. This class is NOT intended for direct use. Custom Fields MUST
inherit from this class.

When creating a custom field you MUST define the c_type property with a valid ctypes data class.

	
c_to_py(c_field)

	c_to_py - A function used to convert the cytpes object into a python object. As a default this function
simply returns c_field directly from the ctypes.Structure object. It’s up to the other Field‘s
to define this if further formating is required in order to turn the cyptes value into something user friendly.

	Parameters:	c_field – a ctypes object from the packet’s internal ctypes.Structure object

	
create_field_c_tuple()

	create_field_c_tuple - A function used to create the required an field in the ctypes.Structure._fields_
tuple. This must return a tuple that is acceptable for one of the items in the _fields_ list of the
cytpes.Structure.

The first value in the tuple MUST be self.field_name as this is used to access the internal c
structure.

	
py_to_c(val)

	py_to_c - A function used to convert a python object into a valid ctypes assignable object. As a default
this function simply returns val. It’s up to the other Field‘s to define this if further
formating is reuqired in order to set the internal structure of the packet.

	Parameters:	val – the value the user is attempting to set the packet field to. This can be any python object.

	
class models.IntField(bit_len=16, signed=False, default_val=0, little_endian=False)

	An Integer field. This field can be configured to be signed or unsinged. It’s bit length can also be set,
however the max bit length for this field is 64.

	Parameters:	
	bit_len (int) – the length in bits of the integer. Max value of 64. (default 16)

	signed (bool) – whether to treat the int as an signed integer or unsigned integer (default unsigned)

	default_val (int) – the default value of the field (default 0)

	Raises:	ValueError – if the bit_len is less than or equal to 0 or greater than 64

	
class models.ArrayField(array_cls, array_size, default_val=None)

	A custom field for handling an array of fields

	Parameters:	
	array_cls – a calpack.models.Field subclass object that represent the Field the array will be
filled with.

	array_size (int) – the length of the array.

	
class models.PacketField(packet_cls)

	A custom Field for handling another packet as a field.

	Parameters:	packet_cls – A calpack.models.Packet subclass that represents another packet

	
class models.Packet(c_pkt=None, **kwargs)

	A super class that custom packet classes MUST inherit from. This class is NOT intended to be used directly, but
as a super class.

Example:

class Header(models.Packet):
 source = models.IntField()
 dest = models.IntField()
 data1 = models.IntField()
 data2 = models.IntField()

	Parameters:	c_pkt – (Optional) a ctypes.Structure object that will be used at the internal c structure. This
MUST have the same _feilds_ as the Packet would normally have in order for it to work properly.

	
byte_size

	The byte size (assuming 8 bits to a byte) of the packet.

	
c_pkt

	returns the internal c structure object being used

	
classmethod from_bytes(buf)

	Creates a Packet from a bytes string

	Parameters:	buf (bytes) – the bytes buffer that will be used to create the packet

	Returns:	an Instance of the Packet as parsed from the bytes string

	
num_words

	The number of words in the packet

	
to_bytes()

	Converts the packet into a bytes string

	Returns:	the packet as a byte string

	Return type:	bytes

	
models.typed_property(name, expected_type, default_val=None)

	Simple function used to ensure a specific type for a property defined within a class. This can ONLY be used
within a class definition as the self keyword is used.

	Parameters:	
	name (str) – the name of the variable. This can be anything, but cannot be already in use.

	expected_type (type) – the expected type. When setting this property at the class level, if the types
do not match, a TypeError is raised.

	default_val – (Optional) the default value for the property. If not set, then None is used. This
MUST be of the same type as expected_type or a TypeError is raised.

	Returns:	the property

	Raises:	TypeError – if the default_val or property’s set value is not of type expected_type

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 models	

Index

 A
 | B
 | C
 | F
 | I
 | M
 | N
 | P
 | T

A

 	
 	ArrayField (class in models)

B

 	
 	byte_size (models.Packet attribute)

C

 	
 	c_pkt (models.Packet attribute)

 	
 	c_to_py() (models.Field method)

 	create_field_c_tuple() (models.Field method)

F

 	
 	Field (class in models)

 	
 	from_bytes() (models.Packet class method)

I

 	
 	IntField (class in models)

M

 	
 	models (module)

N

 	
 	num_words (models.Packet attribute)

P

 	
 	Packet (class in models)

 	
 	PacketField (class in models)

 	py_to_c() (models.Field method)

T

 	
 	to_bytes() (models.Packet method)

 	
 	typed_property() (in module models)

 nav.xhtml

 Table of Contents

 		CalPack: Packets in Python Simplified

 		models - a collection of classes and functions to create new custom packets.

 		Packet Basics

 		Creating a Packet

 		Advanced Packet Concepts

 		Creating an Array of IntField's

 		Encapsulating another Packet within a Packet

 		Packet Fields

 		IntField

 		ArrayField

 		PacketField

 		Creating a Custom Field

 		Class/Function specific Docs

_static/minus.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

