CalPack Documentation
Release 0.0.3

KronoSKoderS

Nov 25, 2017

Contents

1 Examples 3
2 Index 5
2.1 models - a collection of classes and functions to create new custom packets. 5
2.2 Development e e e e e e e e e e e e e e e e e 14
3 Indices and tables 17

Python Module Index 19

CalPack Documentation, Release 0.0.3

CalPack is the only package you’ll need to create, generate and parse packets in an easy to use way. This module
wraps the ct ypes module into an easier to use interface and enabling more features specific to working with Packets.

Contents 1

CalPack Documentation, Release 0.0.3

2 Contents

CHAPTER 1

Examples

Creating a new packet is as simple as creating a python class:

from calpack import models

class UDP (models.Packet) :
source_port = models.IntField()
dest_port = models.IntField()
length = models.IntField()
checksum = models.IntField()

Since calpak is a wrapper to ct ypes, the above class is equivalent to the following ctypes.Structure:

import ctypes

class UDP (ctypes.Structure) :
fields = [
('"source_port', ctypes.c_uinté64, 16),
('dest_port', ctypes.c_uinté64, 16),
("length', ctypes.c_uinté4, 16),
('checksum', ctypes.c_uint64, 16),

Interacting with the packet and it’s field is also simple:

p = UDP()
p.source_port = 80
p.dest_port = 80
p.length = 8

CalPack Documentation, Release 0.0.3

4 Chapter 1. Examples

CHAPTER 2

Index

2.1 models - a collection of classes and functions to create new cus-
tom packets.

This module is the building blocks for creating packets by using builtin and custom fields. It also provides the ability
for users to create custom fields for their packets.

2.1.1 Packet Basics

In this section we cover the basics of how to create a packet and manipulate it contents.

Creating a Packet

Creating a custom packet requires inheriting the Packet class and then defining the Fields within the order they are
expected to be seen:

from calpack import models

class Header (models.Packet) :
source = models.IntField()
dest = models.IntField()
datal = models.IntField()
data2 = models.IntField()

Once a packet is defined, creating an instance of that packet allows you to manipulate it:

my_pkt = Header ()

my_pkt.source = 123
my_pkt.dest = 456
my_pkt.datal = 789

CalPack Documentation, Release 0.0.3

print (my_pkt.source)
123

A packet can also be created with fields already populated:

my_pkt = Header (
source = 1,
dest = 2,
datal = 3,
data2 = 4

print (my_pkt.source, my_pkt.datal,

(L, 2, 3, 4)

my_pkt.dest,

my_pkt.data2)

A packet can then be converted into a byte string:

my_pkt.to_bytes ()
b' {\x00\xc8\x01\x15\x03\x00\x00"'

In reverse, a packet can be created from a byte string array:

my_parsed_pkt =
print (my_parsed_pkt.source)
123

print (my_parsed_pkt.dest)
456

my_parsed_pkt
True

my_pkt

Header.from_bytes (b'{\x00\xc8\x01\x15\x03\x00\x00")

Shows that the packets are two different objects

my_parsed_pkt is
False

my_pkt

Packet fields can be easily copied from and/or compared to other packets of the same Packet subclass:

my_pkt2 = Header ()
my_pkt2.source = my_pkt.source
my_pkt2.dest = 654
my_pkt.source ==
True

my_pkt2.source

my_pkt.dest
False

my_pkt2.dest

Packets themselves can also be compared:

my_pkt = Header ()
my_pkt.source = 123
my_pkt.dest = 456
my_pkt.datal = 789

my_pkt2 =
my_pkt2.source =

Header ()
123

Chapter 2. Index

CalPack Documentation, Release 0.0.3

my_pkt2.dest = 456
my_pkt2.datal = 123

my_pkt == my_pkt2
False

my_pkt2.datal = 789
my_pkt == my_pkt2
True

Note: Comparing two packets that are different classes but may have the same byte output will result in False

2.1.2 Advanced Packet Concepts
Creating simple packets with the basic Fields one thing but typically packets are more complex. For example, one

might want to create a packet with an array of fields, or even encapsulating a packet within another as a field. This is
easy to do within calpack through the use of the ArrayField or PacketField Fields.

Creating an Array of IntField's

When deal with a lot of fields that are the same it can become a bear to create each field:

class my_ long packet (models.Packet) :
datal = models.IntField()
data2 = models.IntField
data3 = models.IntField
datad4 = models.IntField
data5 = models.IntField
data6 = models.IntField
data7 = models.IntField

(
(
(
(
(
(
(
data8 = models.IntField(

)
)
)
)
)
)
)

This can be simplified by using the models.ArrayField:

class ArrayPacket (models.Packet):
data = models.ArrayField(models.IntField(), 8)

Accessing the elements in the ArrayField is similar to that of a python list:

my_array_pkt = ArrayPacket ()

my_array_pkt.data[0] = 123
print (my_array_pkt.data[0])
123

my_array_pkt.data = list (range(8))
print (my_array_pkt.data)
o, 1, 2, 3, 4, 5, 6, 7]

for val in my_array_pkt.data:
val = 100

print (my_array_pkt.data)
[roo, 100, 100, 100, 100, 100, 100, 100]

2.1. models - a collection of classes and functions to create new custom packets. 7

CalPack Documentation, Release 0.0.3

Encapsulating another Packet within a Packet

Sometimes you might want to encapsulate another packet within a packet as a field. This can be done by using the
models.PacketField:

class Header (models.Packet) :
source = models.IntField()
destination = models.IntField()

class CustomPacket (models.Packet) :
header = models.PacketField (Header)
spare = models.IntField()
body = models.ArrayField (models.IntField(), 28)

Access to the fields within the encapsulated packet is as simple as calling that packets members:

pkt = CustomPacket ()
pkt.header.source = 1
pkt.header.destination = 2

2.1.3 Packet Fields

calpack comes with some built-in Field classes that can be used right away.

IntField

The IntField is used to represent an integer. In the backend, this field uses the ctypes.c_int64 or ctypes.
c_uint 64 depending on whether the field is configured as signed or not. This is done by passing the signed
parameter to the IntField:

int_field = models.IntField(signed=True)

Note: IntField isunsigned as a default.

Warning: If a signed value is set to an unsigned value (e.g any value less than 0) a TypeError will be raised.

Warning: although the example above defines a field outside of a Packet, this cannot be done in practice as each
field within the packet must be a new instance of a Field.

If a specific bit length is desired, passing the bit_len parameter to the desired length:

int_field = models.IntField(bit_len=8)

Note: the default value forbit_lenis 16

8 Chapter 2. Index

CalPack Documentation, Release 0.0.3

Warning: If bit_len is less than or equal O or greater than 64 a ValueError will be raised.

Warning: although the example above defines a field outside of a Packet, this cannot be done in practice as each
field within the packet must be a new instance of a Field.

ArrayField
The ArrayField is used to create an array of fields. When creating the ArrayField two parameters must be
passed:

1. An instance of the Field to be used

2. The size of the Array

Example:

array_field = models.ArrayField(
Note that this 1is an xxinstancexx of the IntField
models.IntField(bit_len=8, signed=True)
12

Note: It’s important to that the first argument is an instance of the Field and not the class

Warning: although the example above defines a field outside of a Packet, this cannot be done in practice as each
field within the packet must be a new instance of a Field.

Interacting with the ArrayField is similar to that of a python list where 1en and individual member access can be
done. The Field instance for the first parameter of the ArrayField can also be a PacketField:

class Point (models.Packet) :
x = models.IntField(bit_len=8)
y = models.IntField(bit_len=8)

class ArrayPacket (models.Packet):
points = models.ArrayField(
models.PacketField (Point),
8

pkt = ArrayPacket ()
for i, point in enumerate (pkt.points):
point.x = i

point.y = len(pkt.points) - 1

print ([pkt.points[i].x, pkt.points[i].y for i in range (len(pkt.points))])
[0, 8), (L, 7)Y, (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)]

Accessing the members of an ArrayField with a PacketField as the field type will be accessing instances of
those packets:

2.1. models - a collection of classes and functions to create new custom packets. 9

CalPack Documentation, Release 0.0.3

class ArrayPacket (models.Packet):
points = array_field

pkt = ArrayPacket ()
pkt.points[0].x = 100
print (pkt.points[0].x)
100

print (pkt.points[0].y)
0 # default value of IntField

PacketField

The PacketField is used to encapsulate another already defined packet. The encapsulation of packets can be done
multiple times as well:

class Point (models.Packet) :
x = models.IntField(bit_len=8)
y = models.IntField(bit_len=8)

class Rectangle (models.Packet) :
top_left = models.PacketField(Point)
top_right = models.PacketField (Point)
bot_left = models.PacketField (Point)
bot_right = models.PacketField(Point)

class TwoRectangles (models.Packet):
first_rect = models.PacketField(Rectangle)
second_rect = models.PacketField(Rectangle)

Creating a Custom Field
Creating a custom Field is done by first subclassing the Field class from calpack.models. There are a few
things to consider before creating a custom Field:

1. There are specific properties that must be defined within the class

2. Any methods defined must be a class method and cannot be used as an instance method

3. You must have a basic understanding of the ct ypes module specifically how to use the ctypes.
Structure class.

It is recommended that you study the way that Structures are created if you are looking to create a custom Field.

With that said, defining a custom Field is actually quite simple. The following properties must be defined at either the
class level orin a custom ___init_ :

* c_type - a ctypes class to be used within the internal ct ypes.Structure instance.
* bit_len - the length of the field in bits

Within your custom Field you can customize the following functions which are further defined in subsequent sec-
tions:

* create_field_c_tuple

* py_to_c

10 Chapter 2. Index

https://docs.python.org/3/library/ctypes.html#structures-and-unions/

CalPack Documentation, Release 0.0.3

* c_to_py

create_field c_tuple

This function is used to create the tuple that will go into the _fields_ property of the Packet’s internal ctypes.
Structure. It’s also important to note that the first elements in the tuple must be the property self.
field_name. CalPack will automatically populate this property for the Field class.

As a default, CalPack’s Field super class defines create_field_c_tuple as the following:
def create_field_c_tuple(self): return (self.field_name, ctypes.c_int)

However this can be customized to suit the needs of the custom field. Since this will be directly used to create the
ctypes.Structure._fields_ anything that is appropriate in creating the structure can be used here:

def create_field_c_tuple(self):
return a c_int with only 4 bits as a field tuple. Note: this is similar to how
we set the bit length of the IntField class.
return (self.field_name, ctypes.c_int, 4)

def create_field_c_tuple(self):
return a c_int Array as a field tuple. Note: this is similar to how we set the
array size of the ArrayField class.
return (self.field_name, ctypes.c_int = 10)

Warning: If the first element in the field tuple is not se1f.field_name then access to the internal c structure
will be broken and the packets will not be accessible properly.

pPy_to_c

When setting a packet field to a value, that python object must be converted to a value that can be set for the internal
ctypes.Structure object of the packet. Most occasions the value of the python object is already appropriate. By
default this function does exactly that:

def py_to_c(self, wval):
return val

However in certain cases additional formatting, transformation or validation might be required. Use this function to
override the behavior as needed.

c_to_py

Similar to going from python objects to c, the reverse of going from c to python might need to be configured properly.
Most occasions the value of the c object is already appropriate. By default this function does exactly that:

def c_to_py(self, c_field):
return c_field

However in certain cases additional formatting, transformation or validation might be required. Use this function to
override the behavior as needed.

2.1. models - a collection of classes and functions to create new custom packets. 11

CalPack Documentation, Release 0.0.3

Full Example of Creating a Custom Field

The following is a quick example of how to create a custom Field within CalPack:

from calpack import models
import ctypes

class UInt30 (models.Field):
c_type = ctypes.c_uint32
bit_len = 30

def _ init__ (self):
super (UInt30, self).__init__ ()
self.max_size = (2 << self.bit_len) - 1

def create_field_c_tuple(self):
return (self.field_name, self.c_type, self.bit_len)

def py_to_c(self, wval):
if val < 0:

raise ValueError ("UInt30 must be a positive number!")

if val > self.max_size:
raise ValueError ("UInt30 cannot be greater than " format (self.max_size))

return val

2.1.4 Class/Function specific Docs

class models.Field (default_val=None)

A Super class that all other fields inherit from. This class is NOT intended for direct use. Custom Fields MUST
inherit from this class.

When creating a custom field you MUST define the c_ t ype property with a valid ctypes data class.

c_to_py (c_field)
c_to_py - A function used to convert the ctypes object into a python object. As a default this function
simply returns c__field directly from the ctypes.Structure object. It’s up to the other Field‘s to define
this if further formatting is required in order to turn the ctypes value into something user friendly.

Parameters c_field — a ctypes object from the packet’s internal ctypes.Structure ob-
ject
create_field c_tuple()
create_field_c_tuple - A function used to create the required an field in the ctypes.Structure.

fields tuple. This must return a tuple that is acceptable for one of the items in the _fields_
list of the ctypes.Structure.

The first value in the tuple MUST be se1f . field_name as this is used to access the internal ¢ structure.

py_to_c (val)
py_to_c - A function used to convert a python object into a valid ctypes assignable object. As a default this
function simply returns val. It’s up to the other Field"s to define this if further formatting is required in
order to set the internal structure of the packet.

Parameters val — the value the user is attempting to set the packet field to. This can be any
python object.

12 Chapter 2. Index

CalPack Documentation, Release 0.0.3

class models.IntField (bit_len=16, signed=False, default_val=0, little_endian=False)
An Integer field. This field can be configured to be signed or unsigned. It’s bit length can also be set, however
the max bit length for this field is 64.

Parameters
* bit_1len (int) - the length in bits of the integer. Max value of 64. (default 16)

* signed (bool)— whether to treat the int as an signed integer or unsigned integer (default
unsigned)

e default_val (int) - the default value of the field (default 0)
Raises ValueError —ifthe bit_len is less than or equal to O or greater than 64

class models.ArrayField (array_cls, array_size, default_val=None)
A custom field for handling an array of fields

Parameters

* array_cls-—acalpack.models.Field subclass object that represent the Field the
array will be filled with.

* array_size (int) - the length of the array.

class models.PacketField (packet_cls)
A custom Field for handling another packet as a field.

Parameters packet_cls — A calpack.models.Packet subclass that represents another
packet

class models.Packet (c_pkt=None, **kwargs)
A super class that custom packet classes MUST inherit from. This class is NOT intended to be used directly,
but as a super class.

Example:

class Header (models.Packet) :
source = models.IntField()
dest = models.IntField()
datal = models.IntField()
data2 = models.IntField()

Parameters c_pkt — (Optional) a ctypes . Structure object that will be used at the internal ¢
structure. This MUST have the same _fields_ as the Packet would normally have in order
for it to work properly.

byte_size
The byte size (assuming 8 bits to a byte) of the packet.

c_pkt
returns the internal ¢ structure object being used

classmethod from_bytes (buf)
Creates a Packet from a bytes string

Parameters buf (bytes) — the bytes buffer that will be used to create the packet
Returns an Instance of the Packet as parsed from the bytes string

get_c_field (field_name)
gets the value of the field value of the internal c structure. :param str field_name: the name of the field to
get :returns: the field value

2.1. models - a collection of classes and functions to create new custom packets. 13

CalPack Documentation, Release 0.0.3

num_words
The number of words in the packet

set_c_field (field_name, val)
sets the value of the internal c structure.

Parameters
e field name (str) - the name of the field to set
* val - a cytpes compatible value to set the field to

to_bytes ()
Converts the packet into a bytes string

Returns the packet as a byte string
Return type bytes

models.typed property (name, expected_type, default_val=None)
Simple function used to ensure a specific type for a property defined within a class. This can ONLY be used
within a class definition as the self keyword is used.

Parameters
* name (str)— the name of the variable. This can be anything, but cannot be already in use.

* expected_type (type) — the expected type. When setting this property at the class
level, if the types do not match, a TypeError is raised.

* default_val - (Optional) the default value for the property. If not set, then None is
used. This MUST be of the same type as expected_type or a TypeError is raised.

Returns the property

Raises TypeError - if the default_val or property’s set value is not of type
expected_type

2.2 Development

We assume that if you’re here, you’re interested in helping develop CalPack. This page will go over the details of
branching, sprint planning, CI and CM Tools.

2.2.1 GitHub, Issue Tracking and Branching

Development of CalPack is done within GitHub. Any issues that are encountered or reported are tracked within
GitHub’s internal issues tracking.

When developing code we use the following 3 major branches:

e prod - production level code. This is where relases are tracked. It’s from this version that the pypi repo is
updated. Only integ branch can be pushed to this branch. This branch requires admin approval for Pull
Requests to be merged.

* integ - integration level code. This is nearly a clone of prod. The dev branch can push to this branch as
well any hotfixes (small critical changes that need to be deployed immediately.

* dev - Main development happens here. Any Pull Requests from developers should be against this branch.

14 Chapter 2. Index

https://github.com/KronoSKoderS/CalPack

CalPack Documentation, Release 0.0.3

Any new Pull Request should be against the dev branch. When working on specific features, branch from the dev
branch using the branch name dev/<feature-topic>. When a critical issue is identified that needs to be fixed
immediately, branch from the integ branch using the branch name integ/hotfix-<hotfix-topic>

After each push into any branch a Travis CI and Appveyor to run tests on differing python versions on linux and
Windows. After successfully passing the unittests coverage results are uploaded to coveralls and codacy.

Before a Pull Request into the prod branch, all unittests and QA checks from Coveralls and Codacy have to pass first.

2.2.2 Sprints and Sprint Planning

While issues are tracked within GitHub, we additionally use ZenHub for prioritzing and planning future development
of CalPack. For instant message communication we use slack. To be invited to the channel send a message to
superuser<dot>kronos<at>gmail<dot>com.

Sprints typically run for 2 weeks at a time.

2.2.3 Developing code

The best way to start developing is to look through the issues listed in the issues page of GitHub. When creating new
features or changes that affect the code, it’s imperative that unittests are updated as well. This may require the creation
of new unittests. Any new tests that are implemented or old tests that have changed, need to go through a review with
at least another CalPack developer.

Type of work needed

Right now we’re looking for the following (in order of importance):
* Documentation
¢ Unit Testing

 Feature Requests/Code Improvement

2.2. Development 15

https://travis-ci.org/KronoSKoderS/CalPack
https://ci.appveyor.com/project/KronoSKoderS/calpack
https://coveralls.io/github/KronoSKoderS/CalPack
https://www.codacy.com/app/kronoskoders/CalPack
https://app.zenhub.com/workspace/o/kronoskoders/calpack
kronoskoders.slack.com
https://github.com/KronoSKoderS/CalPack/issues

CalPack Documentation, Release 0.0.3

16 Chapter 2. Index

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

17

CalPack Documentation, Release 0.0.3

18 Chapter 3. Indices and tables

Python Module Index

m
models, 12

19

CalPack Documentation, Release 0.0.3

20 Python Module Index

Index

A

ArrayField (class in models), 13

B

byte_size (models.Packet attribute), 13

C

c_pkt (models.Packet attribute), 13
c_to_py() (models.Field method), 12
create_field_c_tuple() (models.Field method), 12

F

Field (class in models), 12
from_bytes() (models.Packet class method), 13

G

get_c_field() (models.Packet method), 13

IntField (class in models), 12

M

models (module), 12

N

num_words (models.Packet attribute), 13

P

Packet (class in models), 13
PacketField (class in models), 13
py_to_c() (models.Field method), 12

S

set_c_field() (models.Packet method), 14

T

to_bytes() (models.Packet method), 14
typed_property() (in module models), 14

21

	Examples
	Index
	models - a collection of classes and functions to create new custom packets.
	Development

	Indices and tables
	Python Module Index

